
Eurographics Symposium on Geometry Processing 2024
R. Hu and S. Lefebvre
(Guest Editors)

Volume 43 (2024), Number 5
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Figure 1: Lineart vector sketches often feature potential stroke junctions that are hard to disambiguate. We sidestep this challenge by
leveraging winding number features, which instead focus on capturing a notion of region closure. Our resulting multi-region segmentation
method outperforms existing methods on inputs with a diverse set of gap sizes. (Left) An uncolored vector sketch. (Middle Left) The winding
number generated by the sketch’s default stroke directions, unsuitable for clustering on its own. (Middle Right) Several winding numbers for
random sets of stroke orientations, sorted by total variation, which is used to differentially weight certain features. (Right) The automatically
colored sketch after applying k-means clustering.

Abstract
Vector sketch software (e.g. Adobe Illustrator, Inkscape) and touch-interactive technologies have long aided artists in the cre-
ation of resolution-independent digital drawings that mimic the unconstrained nature of freehand sketches. However, artist
intent behind stroke topology is often ambiguous, complicating traditional segmentation tasks such as coloring. For inspiration,
we turn to the winding number, a classic geometric property of interest for binary segmentation in the presence of boundary
data. Its direct application for multi-region segmentation poses two main challenges: (1) strokes may not be consistently oriented
to best identify perceptually salient regions; (2) for interior strokes there is no “correct” orientation, as either choice better
distinguishes one of two neighboring regions. Thus, we form a harmonic feature space from multiple winding number fields
and perform segmentation via Voronoi/power diagrams in this domain. Our perspective allows both for automatic fill region
detection and for a semi-automatic framework that naturally incorporates user hints and interactive sculpting of results, unlike
competing automatic methods. Our method is agnostic to curve orientation and gracefully handles varying gap sizes in the
sketch boundary, outperforming state-of-the-art colorization methods on these “gappy” inputs. Moreover, it inherits the ability
of winding numbers to specify “fuzzy” boundaries, leading to simple strategies for color diffusion and single-parameter-driven
growing and shrinking of regions.

CCS Concepts
• Computing methodologies → Image manipulation; Shape analysis;

1. Introduction

Vector representations of freehand sketches are popular among
artists, finding use in a variety of commercial software packages.
Such formats are particularly appealing as they can be rendered
at any scale without loss of detail. In this setting, the lack of ex-

plicit stroke connectivity constraints imposed on the user eludes
classic segmentation strategies (e.g. flood fill) developed for raster
images. For example, artists may produce over- or under-drawn
strokes that extend past or fail to meet the intended point of in-
tersection with another stroke [YLL∗22]. As such, most state-of-
the-art segmentation methods focus on detecting gaps and clas-
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Figure 2: The winding number is the sum of harmonic functions
defined with respect to individual strokes [JKS13]. In this peda-
gogical example of a two-stroke circle, a naïve use of the winding
number is effective only if the artist’s stroke orientations are con-
sistent (top), and ineffective if not (bottom). A priori, an artist is
unaware of this and has no reason to choose one over the other.

sifying junctions that form the boundaries between regions in a
sketch [ZCZ∗09, FTR18, PMC22, YLL∗22].

In contrast, we use a collection of winding numbers associated
with the strokes/curves of a sketch. First used in computer graph-
ics for solving the point-in-polygon problem [HA01], the winding
number corresponds to the number of times a closed curve encir-
cles a given query point. This property generalizes well to curves
with gaps or over-extensions, providing a sense of partial inclusion
with confidence imparted by the strength of the winding number
at a particular point [JKS13, BDS∗18]. The ability of the wind-
ing number to predict region closure is analogous to the manner in
which humans perceptually distinguish fill regions among a series
of disconnected curves [FTR18, YLL∗22, Kof35].

Two aspects of the classic winding number impede direct use in
segmentation. First, the winding number’s orientation-specificity
means that one might rely on the artist to orient strokes in a co-
herent, correct manner to differentiate inside from outside, as il-
lustrated in Fig 2. In practice, there is no apparent reason for
artists to make conscious decisions regarding stroke direction while
sketching. Furthermore, fixing such orientations in post-processing
is a challenging, ongoing problem, tackled by related works in
other (e.g., point cloud) contexts [TJKSH14, MHZ∗21, XDW∗23].
Second, in the setting of multi-region segmentation, there is no
“correct” orientation for interior strokes of the drawing. Different
choices lead to better winding number identification of one of the
regions on either side of the stroke, as shown in Fig. 3.

We present a framework for multi-region segmentation of lineart
vector sketches that surmounts these difficulties by using multiple
stroke orientations and their resulting winding numbers at once, as
“features” (axes) in an embedding space. These winding number
fields are differentially weighted by their total variation (TV), cap-
turing how consistent they are over broad regions of the sketch, and
thus how useful they are as segmentation features. Voronoi/power-
diagram-based clustering is then used to determine the desired flat-
fill regions of our segmentation. Our framework:

• naturally accommodates both automatic and semi-automatic seg-
mentation methods

• requires no training data
• inherits a notion of region confidence from the classic winding

Figure 3: In this chair sketch, no canonical direction exists for the
center stroke. Either choice of direction induces greater variation
in the winding number across the lower or upper sections (left and
right respectively).

number, demonstrated by a boundary sculpting tool (§4.3.3) and
a proof-of-concept diffuse coloring method (§5.3)

Our automatic method achieves superior performance on “gappy”
inputs with a diverse range of gap sizes, and performs compara-
bly otherwise. Inputs of this kind are representative of doodles or
sketches from users with a broader range of skill sets, and our ap-
proach makes effective flat-fill tools available to this wider audi-
ence. Additionally, we found that all automatic methods are prone
to undesirable errors, so we find it to be a particular strength of
our framework that it allows for simple, intuitive modification of
the results, in contrast to competing automatic methods. The semi-
automatic method allows user input in the form of both color hints
and scribbles as well as easy modification of region boundaries via
power diagram weightings. We achieve colorings comparable to
those of other frameworks with minimal input.

2. Related Work

2.1. Sketch segmentation and colorization

We give a brief overview of the many works aimed at sketch
segmentation and colorization with both vector and raster input.
Our method stands out among existing works for its “boundary-
focused” approach that explicitly considers the global effect of each
stroke element.

Levin et al. develop a landmark method for image colorization
using least-squares optimization to propagate user-provided color
hints across regions of similar intensity in black and white raster
images [LLW04]. Color hints are an intuitive mode of user inter-
action, and inspire our work as well as several others [QWH06,
SBv05, SDC09, PCS21, PMC22, ZLW∗18, ZLSS∗21, FTR18].

LazyBrush is a semi-automatic, user-guided coloring tool that
generalizes to a wider variety of artistic styles than the works de-
scribed above [SDC09]. They solve for an optimal raster coloring
via a modified Potts energy that aims to align region boundaries
with areas of low intensity and softly satisfies color hints. Several
limitations are noted by the authors: most notably, their method pe-
nalizes boundaries that trace long, highly concave strokes, prevent-
ing effective filling of these regions (see Fig. 8B of [SDC09]). In
contrast, our method explicitly retains stroke geometry in compu-
tation of the winding number features, and is effective in such sce-
narios. In supplementary §12.1.3, we recreate Fig. 8B of [SDC09]
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and show that LazyBrush does not handle this input appropriately,
whereas our method succeeds.

Zhang et al. propose a variation on flood-fill known as the
“trapped ball method” [ZCZ∗09]. A radius r ball fills a region from
an initial start point by moving freely in all directions, but can-
not pass through gaps smaller than 2r. The method relies on effec-
tive tuning of an initial r value and the rate at which it decreases
between iterations, both of which are sensitive to any large diver-
sity in gap sizes over the image. Conversely, our fill regions evolve
gradually relative to local gap size as a result of the “confidence”
imparted by the winding number.

Fourey et al. interactively segment raster sketches by propos-
ing a low-complexity gap closure method [FTR18]. Curvature and
stroke-normal-based quality measures are used to rank candidate
gap closure curves, which are drawn above a certain quality thresh-
old. Accurate estimation of stroke endpoint normals is crucial to
the success of this method, which may be confounded by the pres-
ence of “hooklike” artifacts at the end of strokes [YLL∗22]. Such
imperfections are also reflected in the winding number, but they do
not have a pronounced global effect on the manner in which the
winding number identifies fill regions.

Yin and Liu et al. develop a learning-based method for identi-
fying junctions between strokes, broadly applicable to various seg-
mentation tasks [YLL∗22]. They construct a family of sketch fea-
tures from local/global geometric properties such as stroke thick-
ness, inter-stroke distance, and tangency at stroke endpoints. Ran-
dom forest classifiers are trained on human-annotated sketches to
differentiate between end-to-end and T-junctions. The sketch is
segmented by completing the gaps around each detected junction.
We also note the existence of deep learning methods for sketch col-
oring [ZLW∗18,ZLSS∗21], but these are typically aimed at diffuse
coloring and do not produce strict multi-region segmentations. Un-
like these methods, our approach is not learning-based and is not
dependent on training data.

Finally, in [PCS21, PMC22], Parakkat et al. use a constrained
Delaunay triangulation, with all vertices lying either on strokes or
a rectangular “frame” surrounding the image, and partition its trian-
gles to determine flat-fill regions. Building upon their vectorization
work [PBM18], they propose a dual-graph-based method where tri-
angles are partitioned via max flow from color hints. Flow capac-
ity of a dual edge is defined by the shared edge length between
two triangles. Automatic color hints may be generated by placing
pairs of hints on either side of candidate region boundaries. Their
choice of triangulation strongly restricts the possible gap closures
(see Fig. 23 of their work) and does not allow for natural shifting
of region boundaries via some notion of confidence. In our method,
we use a constrained conforming Delaunay triangulation (see §4.1),
which samples the domain in a locally-adaptive manner and gives a
broader choice of gap closures. Region boundaries are inferred via
winding numbers, which have a natural notion of region confidence
as leveraged in the boundary refinement of §4.3.

2.2. Orienting boundary elements

Many recent works have focused on orientation of boundary el-
ements in the setting of binary inside-outside segmentation, as a

precursor to application of methods such as Poisson surface recon-
struction [KBH06]. We cover several below, while also noting that
none have considered orientation in the setting of multi-region seg-
mentation.

Following the groundbreaking use of the winding number in
inside-outside segmentation of triangle meshes [JKS13], Takayama
et al. explore boundary element configurations that minimize
Dirichlet energy for binary segmentation [TJKSH14]. It was noted,
however, that this objective fails to penalize sign changes between
objects that are “attached” along some boundary. Metzer et al. ob-
tain a set of surface patches from an input point cloud whose ori-
entations are first determined with respect to local geometry by a
neural network [MHZ∗21]. Then, the global orientation of patches
is propagated throughout the point cloud according to an electric-
dipole-based energy. Equivalently, Barill et al. formulate the wind-
ing number for point clouds as the sum of these dipole contributions
per oriented point [BDS∗18]. Intuitive properties of the winding
number are leveraged by Xu et al. in their approach to normal as-
signment [XDW∗23]. Guided by the insights that the ideal winding
number should be (1) sharply differentiated between 0 and 1 and
(2) balanced evenly across the vertices of each Voronoi cell, they
regularize the winding number field according to these objectives.

2.3. Sketch vectorization

The problem of sketch vectorization: that of extracting and refin-
ing a curve network that best represents a raster sketch, has a vast
literature, e.g. [NHS∗13, ZCZ∗09, FLB16, SSII18, PBM18, BS18,
PNCB21, GHJB∗23]. Our method or another [YLL∗22] may be
applied to the vector output of such methods for segmentation of
raster input. However, such a pipeline subjects the latter methods
to potential imperfections in the vectorizations, so we focus on the
problem of vector input and do not perform such experiments in
this article. For the interested reader, Yan et al. conduct a compre-
hensive survey and analysis of state-of-the-art sketch vectorization
methods [YVG20].

3. Background

We briefly review winding numbers, total variation (TV), and
power diagrams below. For further reading, we recommend
[JKS13,BDS∗18] (winding numbers), [AFP00] (TV), and [Aur87]
(power diagrams).

3.1. Winding number

Given a curve γ : [0,1] → R2 in the plane, the winding number w
of a point p ∈ R2 \ γ([0,1]) specifies how many times the curve
winds around p in the counterclockwise direction. In particular, it
is defined as the integral of the signed angle rotated by an observer
located at p, tracking the curve γ:

w(p) =
1

2π

∫
γ

dθ

If γ is discretized as a polyline given by a sequence of points
r0,r1, . . . ,rn, then the natural discretization for this integral is:

w(p) =
1

2π

n−1

∑
i=0

θi, (1)
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where tan(θi) =
∥vi×vi+1∥

vi·vi+1
is the angle subtended by each segment

of the curve, and vi = ri − p for all i. This is illustrated in the fol-
lowing inset figure.

As a function itself, the winding num-
ber w is harmonic on its domain Ω := R2 \
γ([0,1]). Some examples with single curves
are shown in Fig. 2. It (and its 3D/surface
generalizations) have found much use as a
way of robustly partitioning a space into
an inside and outside given a boundary representation [JKS13,
BDS∗18, XDW∗23, FGC23], and this fundamental task forms the
basis for many higher-level geometry processing operations. When
the boundary curve is closed, the winding number takes on integer
values, and will also detect “overlaps” in the region bounded by the
curve. In the case of open or noisy curves, the gradual transition in
values from interior to exterior gives a natural confidence measure
on inclusion of a point. We leverage a similar notion of confidence
measure in our framework (see §4.3.3, §5.3).

When γ is discretized, w is the sum of the harmonic winding
numbers associated with each polyline segment −−−→riri+1, whereby
double-sided boundary conditions of ±1/2 are placed on the
left/right, respectively. This may be seen as an instance of the
boundary element method (BEM) for solving the Laplace equation
with double-sided Dirichlet boundary conditions on Ω. Note that
the resultant boundary conditions are not ±1/2, but are instead the
limiting winding number values as one approaches γ (Fig. 2).

3.2. Total variation (TV)

We use total variation (TV) of a winding number to measure its
utility for our segmentation framework. For w : Ω ⊂ R2 → R

TV(w) := sup
φ∈C1

c (Ω,R2),||φ||L∞(Ω)≤1

{∫
Ω

w(x)divφ(x)dx
}
. (2)

In the above, φ is a compactly-supported differentiable vector field,
which has norm no greater than 1 everywhere.

In our setting (see §4.1), we discretize our winding numbers as
piecewise-linear over a triangulation of the sketch complement Ω.
Following [ROF92], one applies integration-by-parts and the diver-
gence theorem to Eq. (2), to arrive at the more interpretable:

TV(w) := ∑
T∈M

Area(T )∥∇w∥. (3)

This energy rewards winding numbers that are relatively constant in
large open spaces and only change quickly in small gaps (see Fig.
4). Such winding numbers only have significant gradient in these
gaps, and thus have relatively low TV.

3.3. Power diagrams

To allow fill regions to grow and shrink in a natural fashion (§4.3.3),
we leverage power diagrams, a generalization of Voronoi diagrams.
One assigns a power radius ρi to each seed point µi and consid-
ers the power distance (squared) to each seed point d2

ρ(p,µi) :=
∥p−µi∥2 −ρ2

i . The power cells are determined by minimal power
distance:

Bρ(µi) := {p ∈ Rn | d2
ρ(p,µi)≤ d2

ρ(p,µ j) ∀ j ̸= i} (4)

Figure 4: Sampled winding numbers sorted by TV. Six randomly
sampled stroke configurations (with varying stroke orientations)
and their resulting winding numbers, sorted by total variation (TV)
are shown. As desired, the winding numbers with lower TV are
more informative for clustering, as they are relatively constant in
large, open areas, and change quickly at gaps, between regions.

As one increases/decreases the power radius ρi, the power cell
Bρ(µi) grows/shrinks, with cell boundaries remaining orthogonal
to the line between the appropriate seed points. If ρ = [ρ1, . . . ,ρk]
is a constant vector (ρi equal for all i), we recover the standard
Voronoi diagram.

4. Method

The input to our algorithm is a vector sketch encoded by a set of
strokes S, with optional point or scribble color hints specified by
the user H =HP∪HS. For ease of processing, we frame each sketch
with an axis-aligned bounding box B ⊂ R2 extended in all direc-
tions by min(∆x,∆y), where ∆x and ∆y are the sketch width and
height respectively. This margin is large enough to allow the wind-
ing number to approach zero on the exterior, as desired, and can
easily be obscured from the user. The output of our method is a set
of filled polygons corresponding to the regions of the sketch.

In our implementation, each stroke s ∈ S is a polyline, a set of
points r0,r1, . . . ,rn ∈ B with inferred edges between each pair of
adjacent points. We regard this particular representation as interop-
erable with alternatives such as Bézier curves (via sampling). We
assign a set of orientation labels d ∈ {−1,+1}|S| to S, distinguish-
ing the original direction in which a given stroke was traced (+1)
and the opposite direction (-1). Under this scheme, the artist’s orig-
inal strokes correspond to the labeling {+1}|S|. We later explore
the space of stroke orientations on which to perform clustering in
§4.2.1. Each point color hint hp = (qp,cp) ∈ HP consists of a point
qp ∈ B and a color label cp ∈ N. Similarly, each stroke/“scribble”
color hint hs = ({qs

0,q
s
1, . . . ,q

s
n},cs) ∈ HS consists of a polyline, or

sequence of points, {qs
0,q

s
1, . . . ,q

s
n} ∈ B and a color label cs ∈ N.

In order to approximate the continuous winding number
field over the sketch, we compute the constrained conform-
ing Delaunay triangulation of the complement of the sketch
strokes Ω := B\S using Triangle [She96]. This yields a
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2D mesh M = (V,E,T ) of vertices V , edges E, and tri-
angles T . Triangle inserts additional points not present in
the original sketch, both on
stroke boundaries and in the in-
terior [She02], in order to satisfy
the Delaunay property for all tri-
angles [Che87] while maintaining
a guaranteed minimum angle of
20 degrees. This default angle is
a conservative choice based on a
theoretically achievable guarantee
of 25.65 degrees ([She97], §3.4.2).
Empirically, the resulting point sampling is denser near the stroke
boundary, mirroring greater variation in the winding number.

To capture the jump discontinuity of the
winding number across strokes, we further
modify M = (V,E,T ) and “cut” the mesh
along the path traced by each stroke, dupli-
cating vertices as they are encountered. See
the inset figure for a schematic of this pro-
cess. The split vertices along the stroke are
not actually moved apart; we simply illus-
trate the cut with a gap.

4.1. Winding number calculation

Given a set of stroke orientations d, we compute the winding num-
ber as the sum of per-stroke contributions:

wd(v) =
|S|−1

∑
i=0

diwi(v) (5)

where wi denotes the winding number of stroke i’s default orienta-
tion, considered independently of other sketch strokes. Decompos-
ing the calculation in this manner allows for quick generation of
new winding numbers for different sets of stroke orientations.

For interior vertices, the winding number is computed as the
sum of signed angles subtended by each polyline edge (Eq. (1)).
Piecewise linear interpolation is performed to approximate wind-
ing numbers on the interior of triangles. For query points outside
the axis-aligned bounding box of a particular stroke, this stroke’s
contribution to the winding number is identical to that of the line
segment between its endpoints [JKS13]. We use this approximation
of the sketch geometry where appropriate to improve performance.

For points v that lie on the interior of
strokes, our calculation must be adjusted. See
inset for a schematic. The contribution to the
winding number from the two edges e1,e2 that
share v as an endpoint is:

w̃i(v) =
∆φ±π

2π
for vle f t/right (6)

where ∆φ is the turning angle between e1,e2. Contributions from
other edges remain the same.

Furthermore, the true winding number at stroke endpoints is un-
defined, and limits to different values depending on the direction in

which it is approached (see e.g. §2.3.2 of [FGC23]). To ensure fi-
nite total variation, we simply use a weighted average of the neigh-
boring winding numbers at stroke endpoints. This approximation is
sufficient for our purposes and leads to reasonable region bound-
aries in our results.

wi(v) =
∑n∈N (v)

wi(n)
∥v−n∥

∑n∈N (v) ∥v−n∥−1 if v is an endpoint of stroke i (7)

Our simple implementation of the winding number calculation
does not introduce a performance bottleneck and facilitates quickly
recomputing the winding number for many arbitrary sets of stroke
orientations. A fast multipole method might be used to acceler-
ate this calculation [BDS∗18], but it is less apparent that its gains
would be worthwhile with input of a single stroke. Similarly, sim-
pler hierarchical strategies with less overhead may be considered
(§4.3 of [JKS13]). We refer readers to §5.4 for a detailed break-
down on the runtime of our method for sketches of varying com-
plexity.

4.2. Clustering

To segment Ω into a set of color regions, we perform
Voronoi/power-diagram-based clustering in a feature space com-
prising multiple winding numbers. The winding number fields are
denoted {F0, . . . ,Fn−1}, each of which corresponds to a set of
stroke orientations generated according to §4.2.1. Ω is embedded
into the space via its triangulation M, with vertex embeddings:

E(v) 7→
[
α0F0(v), . . . ,αn−1Fn−1(v)

]T
, (8)

where αi ∈ R+ denote feature weights described below in Eq. (9).
The vertex embeddings are piecewise-linearly interpolated to ob-
tain an embedding of M.

4.2.1. Feature generation and weighting

We first uniformly sample m = min(100, |S|) random stroke con-
figurations {d0, . . . ,dm−1} and calculate a winding number field
for each: Fi(v) = wdi(v). Each such feature Fi is then scaled by a
weight αi representing the normalized relative total variation:

α̃i = max
Fj

{TV(Fj)}−TV(Fi) & αi =
α̃i

∑
m−1
j=0 α̃ j

. (9)

This weighting ensures that winding numbers with lower TV have
greater influence on the segmentation. As shown in Fig. 4, these are
fields with variation concentrated in small gaps rather than in large,
open areas. In supp. §7, we present an ablation study where TV
weighting is removed, showing clearly that it improves the quality
of clusters.

As for m, we established a lower bound of 100 as a conserva-
tive choice, based on experiments (supp. §4) that showed minimal
dependence on this parameter beyond a certain threshold. To ac-
commodate larger sketches, we also asked that m at least scale with
the number of strokes. There are also additional supplementary ex-
periments that show the method is relatively invariant to the random
sampling of features (supp. §9).
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4.2.2. Semi-automatic method

Our semi-automatic method colors a sketch according to any user-
provided hints H = HP ∪ HS. We initialize seed points µi for a
Voronoi diagram from these hints in the following manner:

• Point hints hp = (qp,cp) ∈ HP result in a single seed point µp =
E(qp) with color label cp.

• Scribble hints hs = ({qs
0, . . . ,q

s
n},cs)∈HS result in multiple seed

points whose Voronoi cells are later merged. In particular, there
is a seed point for each triangle t containing at least one point
in hs. For each such triangle, we take the average of all qs

i ∈ t,
denoted q̄t , and initialize a seed point µs

t = E(q̄t) with color label
cs.

As multiple point and scribble hints may have the same color la-
bels, we then merge all clusters that share a label. This basic ap-
proach may form the first part of a pipeline that continues with
a connectivity-preserving post-processing step (§4.2.4) and simple
editing/sculpting operations (§4.3). As such post-processing and
editing/sculpting steps may also be applied to our automatic out-
put, we describe our automatic pipeline first as follows.

4.2.3. Automatic coloring and cluster initialization

As an alternative to manual specification of hints, we also propose
a fully automatic coloring method based upon the efficient k-means
clustering algorithm. Supplementary section §1 provides a brief
overview of Lloyd’s algorithm [Llo82] and k-means. One minor
change from the base algorithm is that, per iteration, we compute
centroids as an area-weighted average of the vertices associated
with a cluster, as befits our particular application.

User selection of k is important to the overall success of the au-
tomatic method, but we feel this parameter is both flexible and in-
tuitive in our setting and framework. First, k is simple to estimate,
constituting a rough guess at the number of desired color regions.
Color regions themselves are perceptually defined, and there is no
objectively correct number; a user’s estimate captures their percep-
tual reasoning. Second, owing to the speed of k-means, rapid itera-
tion across different values of k is convenient and could be realized
with a simple “slider” UI element (see §5.4 for timing informa-
tion). Lastly, if the user does not wish to modify k, over/under-
segmentation are easily fixed via the editing/sculpting operations
of §4.3. To support these points, we provide experiments demon-
strating behavior with respect to varying k (Fig. 15, supp. §8) and
a supplementary video demonstrating the editing/sculpting opera-
tions.

In addition, we pair k-means with a custom strategy for initial-
izing seed points. We utilize properties unique to our constrained
conforming Delaunay triangulation: namely, that triangles become
larger as distance to the nearest stroke increases (i.e. within fill re-
gions) and that the largest triangles appear on the rectangular frame
boundary. Our strategy is inspired by k-means++ [AV07], a ran-
domized strategy for seed initialization, and by the graph-based ap-
proach in [PCS21,PMC22]. The following strategy is deterministic
and initializes a set of seed points U = {µ0, . . . ,µk−1}:

1. In order to avoid over-segmentation of the background, we first
generate a mask of background triangles TBG ⊆ T ; full details
are provided in supp. §2.

Figure 5: Examples of user refinements to an automatically gen-
erated coloring. (Left) The user adjusts the power radius of the
centroid associated with a color hint, eliminating slight color spill.
(Right) The user places an additional color hint to segment a finer
detail of the sketch.

2. The first seed point µ0 is initialized on the barycenter of the
sketch’s largest triangle, which will be in TBG.

3. For following seed points µ1, . . . ,µk−1, we score all triangles
t ∈ T\TBG as follows:

scorei(t) = min
j∈{0,...,i−1}

{
∥µ j −E(Bary(t))∥2

}
×
√

Area(t),

where Bary(t) and Area(t) denote the triangle barycenter and
area, respectively. Then, we select the triangle ts with the highest
score and initialize µi = E(ts).
Our strategy balances two aims: (1) selection of triangles within

the interior of fill regions, where triangles are largest and (2) ini-
tialization of seed points that distinguish new clusters apart from
those already identified by previous selections, akin to k-means++.

4.2.4. Post-processing and boundary extraction

The Voronoi cells in our feature space partition the vertices of M
into clusters that are used to determine the flat-fill regions. We first
perform a few intuitive post-processing steps to ensure that (1) triv-
ial (fully-closed) fill regions are always detected and (2) each clus-
ter of vertices is connected as a subset of the edge graph of M. Full
details on these procedures are described in supp.§6.1. A charac-
teristic example is shown in Fig. 10.

In order to determine the boundaries between flat fill regions, we
pull back Voronoi/power cell boundaries onto M via the embed-
ding E , giving us piecewise-linear boundaries. These boundaries
are linear over triangles with two different vertex labels, and form a
barycentric subdivision of triangles with three different labels. Full
details are given in supp. §6.2. We do not perform any boundary
beautification via curve optimization, sharp corner detection (both
done in [PMC22]), or junction type classification [YLL∗22]. Our
method would be compatible with such post-processing, if desired.

4.3. User editing/sculpting of fill regions

Our framework easily allows three types of natural editing and
sculpting operations to be applied to the draft output from previ-
ous steps. These are explained below, and showcased in Fig. 5 and
in our supplementary video.

4.3.1. Merging clusters

Each cluster seed point is projected from the feature space to its
closest vertex on the mesh as an interactive marker. Using these
markers, the user may select clusters and merge them at will.
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Figure 6: Automatic coloring comparison. We compare to
[YLL∗22] and [PMC22] on three representative examples. Our
method appropriately handles larger gaps, and benefits from bet-
ter seed initialization relative to [PMC22]. “Fish” sketch from
[Goo17], licensed under CC 4.0 BY.

4.3.2. Splitting/creating new clusters

The user may place additional color hints on the sketch. These hints
can correspond to existing color groups, or represent a new group,
thereby splitting existing fill regions. Each added hint creates ad-
ditional seed points as described in §4.2.2. We then recompute the
identification of points to clusters without running k-means an ad-
ditional time in order to precisely capture the user’s selection.

4.3.3. Cluster refinement via power radius adjustment

For hints that under- or over-fill a desired region, the user may ad-
just the power radius ρi in order to refine the cluster boundary. Note
that the user need not specify the power radius of each cluster in
granular detail. Instead, we implement this feature as a “slider” for
which the increment size is calculated automatically (see supp. §5
for details).

5. Results

Our algorithm was run on a sample of 15 lineart sketches gathered
from the Quick, Draw! [Goo17], [EHA12], and [YLL∗22] datasets
and from the authors. In supp. §3.1 and supp. §12, we include 25
additional results from Quick, Draw!, [EHA12], and Blender Cloud
[Ble21]. Please see our dataset for detailed license information.

5.1. Comparison to automatic works

We compare our automatic method to those of [YLL∗22] and
[PMC22] via an informal user survey (Fig. 7) and some represen-
tative examples (Fig. 6). All results are available in supp. §12.2.

Figure 7: Informal user survey on automatic method comparisons
to [YLL∗22] and [PMC22]. 20 participants took part in a 16-
question survey that asked them to pick a preference (or neither)
among paired, unlabelled results presented to them. All sketches,
the survey, and detailed survey results may be found in our sup-
plementary materials archive. The subset of “gappy” sketches was
subjectively determined without knowledge of the survey results:
Abstract, Fruit, Penguin, Television, Bee, Elephant, Fish, and Frog.

To generate the outputs of [YLL∗22], we first run sketches through
their preprocessing script, which performs smoothing, stroke con-
solidation, and de-hooking with the default user-specified param-
eters. We then apply the algorithm of [YLL∗22]. The outputs of
[PMC22] were graciously generated by the authors upon request.
For our method, k was estimated by the user (§4.2.3). Other pa-
rameters are set via the formulae described elsewhere in the text:
see §4.2.1 for the number of features m and TV weights; see §2 for
background thresholding; see §5 for power radius incrementation.

Overall, the survey shows that our method outperforms [PMC22]
and is comparable to [YLL∗22]. Furthermore, we clearly outper-
form both methods on “gappy” sketches that have a diverse range
of gap sizes. For such sketches, the opposing methods miss large
gaps [YLL∗22] or over/under-segment due to poor automatic seed
placement [PMC22] as illustrated in Fig. 6.

In such sketches, humans tend to close gaps in a perceptual man-
ner without conscious effort [Kan79], rather than relying on a pre-
cise geometric criterion like gap width. Based on the survey results,
we argue that the winding number better mirrors this intuitive no-
tion of region closure. This contrasts with the gap/junction-based
approaches of the competing methods. In [PMC22], edges of the
constrained Delaunay triangulation explicitly close gaps via short-
est line segments and explicit edge length bottlenecks are used.
In [YLL∗22], a learning-based junction classifier is trained, and
an important closure factor parameter (§7 of [YLL∗22]) must be
set. This parameter is correlated with a maximum allowable gap
size and we used the default value in our experiments, not having
encountered a strategy for setting it otherwise. Further results on
10 additional inputs from [Goo17] are provided in supp. §12.2.1,
highlighting our relative superiority on gappy inputs. Additionally,
we include results on 5 additional inputs from [Ble21] that were
included in the dataset of [YLL∗22] in supp. §12.2.2.

Finally, we highlight that all automatic methods (ours included)
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were not entirely robust and prone to undesirable errors. Of the
three automatic methods being compared, only ours accommodates
a simple transition to manual editing, allowing additional user hints
and natural shifting of region boundaries via power radii. More-
over, the user may specify k to fit their desired workflow: an artist
can encourage under-segmentation in the automatic output and
specify new clusters manually, or encourage over-segmentation and
perform manual merging. Operations in an example coloring work-
flow are demonstrated in Fig. 5 and in our supplementary video.

5.1.1. Quantitative Assessment

Quantitative comparisons on colorized vector sketches are chal-
lenging due to the need for a “ground truth" segmentation. This
is almost never available for vector sketches “in the wild”, and
retroactive segmentation may not preserve the artist’s intent. Fur-
thermore, as argued in the sketch vectorization literature [PNCB21,
GHJB∗23], purely geometric measurements ignore small, but per-
ceptually important differences.

For completeness, we consider the benchmark metrics of
[YVG20]: symmetric Hausdorff/Chamfer distances between raster
curves. See §5.1 of [YVG20] for specific details. To this end, a
small quantitative experiment was performed on 10 sketches from
[EHA12] with near-perfect segmentation. After completing any
small gaps manually, the boundaries of the closed sketches were
destroyed at random by introducing gaps: see supp. §3 for our pro-
cedure. We ran our method and that of [YLL∗22] on the destroyed
inputs, then rasterized the results for use with the code of [YVG20],
comparing to the ground truth in each case.

The table in Fig. 13 shows the benchmark metrics and Fig. 14
shows selected examples (rest in supp. §3.1). Our method performs
favorably compared to that of [YLL∗22] on a majority of inputs
due to the varying gap sizes. [YLL∗22] misses some junctions and
thus fails to create certain desired regions at all, penalizing their
performance to an inordinate degree.

5.2. Comparison to manual works

We selected several state-of-the-art coloring tools based on works
described in §2.1 ( [SDC09], [FTR18], [PMC22]) and compare to
their output (Figs. 8, 9). Our sketches were colored using public im-
plementations of these methods: the “Colorize Mask” tool of Krita
5.2.2 [Kri23] for [SDC09] and the “Colorize Lineart [Smart Color-
ing]” tool of G’MIC [TF24] for [FTR18]. For [PMC22], the authors
colored our sketches independently upon request.

For all manual methods, the colorings can be made near-perfect
with enough input, so we have fixed a minimal set of hints for com-
parison: strokes for [SDC09] and [FTR18] in Fig. 8, and points
for [PMC22] in Fig. 9. For our method, we have also included
a small number of strength adjustments constituting minimal ad-
ditional input, easily implemented with a scroll wheel, for exam-
ple. In the stroke comparisons, we find that our method qualita-
tively outperforms competing methods, successfully avoiding over-
segmentation of the boundary, and better captures a sense of region
closure (e.g. Penguin’s beak). In the point comparisons, we perform
similarly, and note that our method allows for simple adjustment of
boundary regions via power radii, for which [PMC22] lacks a direct

Figure 8: Comparison to stroke hint methods [SDC09, FTR18].
Fixed “natural” stroke hints were provided, along with a few
strength adjustments for our method. We avoid over-segmentation
of the boundary, and better capture region closure, as highlighted
in the beak of the penguin. We also segment the snowman’s
scarf correctly due to operating on vector input, which maintains
connectivity at any resolution. “Elephant” sketch from [Goo17];
“Snowman” sketch from [EHA12], both licensed under CC 4.0 BY.

mechanism. In both settings, we benefit from operating strictly on
vector input in correctly coloring the snowman’s scarf. Full results
for all 15 sketches are present in supplementary §12.1.

5.3. Proof-of-concept diffuse coloring

To further illustrate the usefulness of the winding number as a
confidence measure, we devise a rudimentary scheme for diffuse
sketch coloring (Fig. 11). We construct the same feature space E as
above. Then, we compute the color c(v) at each v ∈V as follows:

c̃(v) =
k−1

∑
i=0

C(µi)

∥µi −E(v)∥4 & c(v) =
c̃(v)

∑
|V |−1
j=0 c̃( j)

(10)

where C(µi) is the color associated with seed point µi.
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Figure 9: Comparison to point hint methods [PMC22]. Fixed “natural” point hints were provided, along with a few strength adjustments for
our method. We perform similarly, and segment the snowman’s scarf correctly due to operating on vector input, which maintains connectivity
at any resolution. We also highlight our ability to adjust region boundaries via power radii, which is not available in the competing framework.
“Swan” and “Snowman” sketches from [EHA12], licensed under CC 4.0 BY.

Figure 10: An example of cluster connectivity postprocessing. A
few erroneously classified points appear on the left-hand side of
the crane’s neck; we trivially detect these points as disconnected
from the interior and merge them with their neighboring cluster.
“Crane” sketch from [EHA12], licensed under CC 4.0 BY.

5.4. Timing of method

The table in Fig. 12 provides a breakdown of the amount of time
(in seconds) taken at each stage in our automatic algorithm on sev-
eral sketches. These experiments were run on a 2021 MacBook Pro
(Apple M1 Pro, 16 GB LPDDR5). k = 20 is used in clustering,
which we consider to be a high degree of segmentation.

We note that the implementation of our mesh cutting (which oc-
curs after Triangle [She96] has produced an initial constrained con-
forming Delaunay triangulation) is rather inefficient with consider-
able room for optimization. This is by far the largest contributor to
the first measured “Triangulation” stage, with Triangle itself termi-

Figure 11: Sketches colored using our prototype color diffu-
sion method. “Abstract” (top left) was colored using seed points.
“Fruit” (top right) and “Snail” (bottom) were colored automat-
ically with k = 8 and k = 5 respectively. “Snail” sketch from
[EHA12], licensed under CC 4.0 BY.

nating in a matter of milliseconds. Similarly, our implementation
of k-means does not make use of parallelization strategies and in-
cludes only the most basic distance caching.

Nonetheless, our method is quite performant, especially in terms
of the minimal time required to re-run the segmentation once a
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Sketch No. edges Triangulation WN TV k-means Cluster Refinement Boundary Extraction Total
penguin 181 0.099 0.006 0.044 0.054 0.008 0.016 0.226

noir 850 0.688 0.027 0.275 0.223 0.054 0.046 1.313
cat 1362 1.139 0.113 0.425 0.277 0.082 0.074 2.111

hero_bane 11203 20.092 1.623 3.817 2.405 0.939 3.999 32.876

Figure 12: Time (in seconds) taken at each stage of our method’s pipeline. (“WN” = winding number, “TV” = total variation)

sketch has been loaded into the program. See “Triangulation,”
“WN,” and “TV” for the upfront, one-time cost of loading a sketch;
see “k-means” for the cost of running the automatic segmentation
(§4.2.3); see “Cluster Refinement,” “Boundary Extraction” for the
stages involved in adding/merging/refining clusters. In particular,
updates to user-provided hints can be performed in a real-time fash-
ion: see our supplementary video for a demonstration.

5.5. Parameter & other experiments

We perform several parameter and ablation experiments to verify
design decisions in our framework. Results of these are presented
on three representative sketches each in the supplementary.

• We vary m, showing our choice is conservatively high (supp. §4).
• We vary the set of m randomly sampled winding number fea-

tures, showing stability of results (supp. §9).
• We consider the feature space without TV weighting, showing

degradation of the results (supp. §7).
• We vary k, and show suitable over/under-segmentation that is

easily improved with simple editing operations (Fig. 15, supp.
§8).

• We vary hint positions, showing stability of results (supp. §10)

Lastly, in supplementary §11, we consider an application of basic
spectral clustering to the problem at hand, and see that it suffers
from a bias toward balanced clusters and poor seed initialization.

6. Conclusion

We have proposed a winding-number-based method for multi-
region segmentation of lineart vector sketches that outperforms ex-
isting methods on inputs with a diverse range of gap sizes. Such in-
put is typical of less professional sketches and doodles, broadening
the availability of flat-fill tools to a wider range of users. This chal-
lenging problem is solved by considering a feature space of wind-
ing numbers weighted by relative total variation. As proof of our
method’s utility, we design two intertwined paradigms by which
users may color sketches: automatic rough coloring and interactive
region sculpting, and show that we perform comparably to state-
of-the-art methods. Lastly, our perspective inherits the notion of
region confidence imparted by winding numbers; we demonstrate
its use in designing sculpting tools and a proof-of-concept diffuse
coloring scheme.

6.1. Limitations & future work

There are several aspects of our framework that invite further im-
provement or investigation. First, we did not experiment exten-
sively with some of the precise formulae in our pipeline, e.g., fea-
ture weights (Eq. (9)) and feature value at stroke endpoints (Eq.

Hausdorff Chamfer

YLL (2022) Ours YLL (2022) Ours
bell 0.0182 0.0255 0.0022 0.0011

bottle 0.8302 0.0665 0.1928 0.0064
butterfly 0.2463 0.1314 0.0280 0.0032
candle 0.0077 0.0090 0.0007 0.0018

dog 0.0921 0.1632 0.0049 0.0078
pizza 0.2221 0.0679 0.0147 0.0040

seagull - 0.0467 - 0.0049
teddy 0.2444 0.2153 0.0181 0.0193
tree 0.5140 0.0463 0.0946 0.0036

umbrella 0.4942 0.0496 0.0774 0.0035
Average 0.2966 0.0821 0.0482 0.0056
Std. dev. 0.2703 0.0661 0.0638 0.0052

Figure 13: Results of the quantitative study (§5.1.1). A set of 10
well-segmented images from [EHA12] serve as our ground truth.
Then, we randomly destroy strokes by introducing gaps, and run
our method and that of [YLL∗22] on the destroyed inputs. We com-
pare the output of each method to the ground truth segmentation
using the metrics of [YVG20], ranging from 0 to

√
2 (with 0 being

a perfect match between region boundaries). [YLL∗22] does not
generate fill regions for the “seagull” input.

(4.1)). Tuning these may boost performance further. Second, we an-
ticipate that applying existing (or developing novel) aesthetic gap
closure methods would also significantly boost the quality of our
output. Third, the postprocessing of §4.2.4 to ensure connected
components may complicate the boundary refinement of §4.3.3;
strategies to avoid it could be explored. Fourth, the current imple-
mentation of our method does not consider how to “split" strokes,
and may fail when a single long stroke is not split along sharp cor-
ners or self-intersections (Fig. 16).

Lastly, we highlight three future directions that arise from the
simplicity and intuitiveness of our approach. First, it is certainly
possible to combine our space of winding number features with
other methods that are more focused on gap/junction detection and
classification. We feel that the ability of winding numbers to more
intuitively capture region closure could have a symbiotic relation-
ship with such methods. Second, multi-region segmentation with a
winding number feature space generalizes naturally to a 3D setting,
where strokes are replaced by triangle meshes/soups, parametric
surfaces, or oriented point clouds. Third, we believe that we have
not fully leveraged the inherited notion of region confidence. We
look forward to improving and extending our power-based tool for
boundary refinement and proof-of-concept diffuse coloring, and to
finding additional applications for our theoretical framework.
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Figure 14: Comparison to [YLL∗22] on selected inputs from the
quantitative study (§5.1.1). Results from our method were gener-
ated by the automatic variant. k was specified by the user for each
sketch. “Umbrella,” “Pizza,” “Butterfly" sketches from [EHA12],
licensed under CC 4.0 BY.
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