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Fig. 1. Pipeline outline and demonstration on sparse intersecting ribbon input. Left: A VR ribbon sketch [Rosales et al. 2021, 2019] is sparsified to mimic a
simpler, plausible user input, and points are evenly sampled from the ribbons. Middle: Points form a Faraday cage around the interior. Electric potentials under
various linear external fields, and the maximum electric field strength over these scenarios are shown. Right: Gradient information from maximum field
strength is used to estimate normals and filter interior parts of ribbons. Poisson Surface Reconstruction [Kazhdan and Hoppe 2013] is used to generate the
surface free of interior structures and concavities at intersecting points, as seen in comparison methods (see Fig. 10). Input drawing: © Jafet Rodriguez.

We propose a novel method (FaCE) for normal estimation of unoriented point
clouds and VR ribbon sketches that leverages a modeling of the Faraday cage
effect. Input points, or a sampling of the ribbons, form a conductive cage
and shield the interior from external fields. The gradient of the maximum
field strength over external field scenarios is used to estimate a normal at
each input point or ribbon. The electrostatic effect is modeled with a simple
Poisson system, accommodating intuitive user-driven sculpting via the spec-
ification of point charges and Faraday cage points. On inputs sampled from
clean, watertight meshes, our method achieves comparable normal quality
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to existing methods tailored for this scenario. On inputs containing interior
structures and artifacts, our method produces superior surfacing output
when combined with Poisson Surface Reconstruction. In the case of ribbon
sketches, our method accommodates sparser ribbon input while maintaining
an accurate geometry, allowing for greater flexibility in the artistic process.
We demonstrate superior performance to an existing approach for surfacing
ribbon sketches in this sparse setting.
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1 Introduction
A Faraday cage [Faraday 1832] is a conductive enclosure that is used
in many engineering contexts to block some electromagnetic fields.
It frequently takes the form of a mesh or cage to allow other fields
through, e.g. visible light. A common example is the mesh on the
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front of a microwave door, which protects users outside from the
radiation within while allowing the user to see inside. This shielding
effect is achieved by the movement of positive and negative charges
in the cage to counteract and greatly dampen the imposed field.

Drawing inspiration from this effect, we propose a novel method
for estimating normals of unoriented point clouds ("Faraday cage
estimation," or FaCE). Points are modeled as part of a Faraday cage,
shielding the interior from external electrical fields. By inducing a
series of linear external fields, we are able to probe the geometry
of the underlying shape. The maximum field strength over this set
of external fields defines a scalar function whose value provides
a notion of interiority for unoriented point clouds. Moreover, the
gradient of said function yields an effective estimate of the normal
at the input points. To further extend this model, we introduce
prototype post-processing operations (§3.6). These take the form of
adding external fields imposed by point charges (for a subtractive
effect) and/or additional Faraday cage points (for an additive effect).

An (ideal) Faraday cage in the electrostatic setting is modeled with
a simple Poisson problem, requiring a harmonic potential function
with an equipotential constraint on the cage surface. The gradient of
the potential yields the electric field; its norm indicates field strength
under each imposed external field. Due to the well-investigated
structure of Poisson problems, we are able to leverage fast numerical
linear algebra solvers to find the resulting fields, resulting in an
efficient pipeline for normal estimation.

FaCE differs from existing normal orientation methods, represent-
ing the geometry of surfaces resulting from intersecting components
more faithfully. In particular, it tends to orient each component con-
sistently, recovering normals that align with the negative gradient
of the winding number (§4.1). This improves subsequent surface
reconstructions by (1) preventing unwanted concave artifacts near
intersection points (concavities) and (2) reducing surface artifacts
where proximate surfaces run parallel to one another (pitting). We
encounter both scenarios in misaligned partial point clouds and
demonstrate superior quantitative and qualitative results on several
synthetic scans (§4.3). Additionally, our method exhibits strong per-
formance on CAD objects with interior components and artifacts
from modeling (§4.5). On clean models, FaCE achieves competi-
tive results and shorter running times than several state-of-the-art
methods. (§4.6).

Interior structures also arise commonly in artistic or design mod-
eling contexts in which users are not necessarily concerned with
maintaining closed, watertight surfaces. We consider the applica-
tion of virtual reality (VR) sketches drawn with the “ribbon brush”
technique of [Rosales et al. 2021, 2019]. These sketches are created
by tracing (unoriented) ribbons with a multi-axis wand peripheral.
Each ribbon sketch intends to define a watertight surface: to recover
it, we propose orienting point clouds evenly sampled from each
sketch via our method and running Poisson Surface Reconstruc-
tion (PSR) [Kazhdan and Hoppe 2013]. Unlike the ribbon surfacing
method of [Rosales et al. 2019], which frequently generates outputs
with multiple components, ours produces a closed, watertight mesh
that adheres to the sketch geometry. Moreover, the approach of
[Rosales et al. 2019] assumes tightly constructed ribbon sketches
with virtually no gaps between adjacent strokes, increasing the la-
bor of the artist. Our pipeline appropriately handles sparser ribbon

input and exhibits better performance than existing point cloud
orientation methods in this scenario (§4.4). We hope that our work
will promote easier and more widespread use of ribbon brush tools.

2 Related Work
Our work draws inspiration from two main families of methods:
surface reconstruction and point cloud orientation.

2.1 Surface reconstruction from point clouds
Some of the classical methods in point cloud reconstruction either re-
quire oriented normals or compute them separately. The early work
by Hoppe et al. [1992] computes an SDF by fitting local planes into
a neighborhood of every point and measures a signed distance to
those planes. Generalizing this linear approach, an implicit function
can be defined as the sum of nonlinear radial basis functions (RBFs)
centered at the points [Carr et al. 2001; Muraki 1991], unfortunately
leading to dense and ill-conditioned systems. Perhaps the two most
well-known methods in this category are Poisson Surface Recon-
struction (PSR) and Screened PSR [Kazhdan et al. 2006; Kazhdan
and Hoppe 2013]. In particular, Kazhdan et al. [2006] observe that
normals are the gradient of an indicator function. They minimize
an 𝐿2 norm of the difference between the indicator gradient and
the normals, leading to a Poisson equation. Kazhdan and Hoppe
[2013] add a data term, equivalent to solving a Screened Poisson
equation, yielding more precise reconstructions. We demonstrate
surface reconstructions with our normals using these methods in §4.
Recent work has aimed to incorporate uncertainty information into
these methods [Sellán and Jacobson 2023; Sellán and Jacobson 2022].
Alternatively, Feng and Crane [2024] propose a robust method to
compute an SDF directly from noisy oriented geometry. The 0-level
set of the SDF yields a reconstruction of the surface.

2.1.1 Without orientations, or partial information. Earlier surface
reconstruction methods, including Crust [Amenta et al. 1998, 2001],
tight cocone [Dey and Goswami 2003], and 𝛼-shapes [Bajaj et al.
1995; Bernardini et al. 1999; Edelsbrunner and Mücke 1994] rely on
classical computational geometry approaches that provide theoreti-
cal guarantees but do not specifically address input noise. Dey &
Goswami [Dey and Goswami 2004] are among the first to tackle the
problem of noise, yet their method often produces a noisy surface
when the assumed noise model is not satisfied [Kazhdan et al. 2006].
A more recent method, VIPSS [Huang et al. 2019], reconstructs an
implicit surface via minimizing a variational smoothness energy
with a data term and a unit gradient norm constraint on the input
points. Their method is robust yet computationally inefficient for
dense point clouds and does not handle interior structures.
Some recent methods address a domain-specific problem of re-

constructing approximately developable surfaces [Dong et al. 2024;
Wang et al. 2023]. Our method addresses a generic problem, only
assuming an appropriate degree of smoothness of the input surface,
and thus has a wider range of applications.
Recent progress in implicit surface representation via deep net-

works brings new tools for surface reconstruction. For instance, Oc-
cupancy Networks [Mescheder et al. 2019; Peng et al. 2020] learn a
binary inside-outside predicate. Some of the well-known approaches
like DeepSDF, Neural Pull, and others [Baorui et al. 2022; Chabra
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et al. 2020; Ma et al. 2021; Park et al. 2019] learn a full signed dis-
tance function (SDF), or an unsigned distance function [Lu et al.
2024; Ren et al. 2023]: see Farshian et al. [2023] for a recent review.
While these methods can be used for point cloud reconstruction,
they typically excel within only a single category of shapes and
have trouble generalizing to other categories [Farshian et al. 2023].
Similarly, these methods do not address the issue of interior points
and therefore are not directly applicable to our problem.
For surfacing ribbon sketches, the current state of the art is Sur-

faceBrush [Rosales et al. 2019]. They reconstruct the connectivity of
ribbon sketches via a discrete constrained optimization. We demon-
strate that due to the variational nature of our framework, our
method outperforms theirs on a variety of VR ribbon inputs; the
difference is especially noticeable for sparse VR sketches (§ 4).

2.2 Point cloud orientation
In the case of unoriented point clouds, many works have aimed to
solve for normals and applied PSR as a practical indicator of the
normal estimation quality.

Following the work of Hoppe et al. [1992], classical approaches to
normal estimation tend to compute the tangent plane for each point
individually and perform global alignment to obtain a consistent
orientation. Mitra and Nguyen [2003] optimize local neighborhood
size for least squares. Pauly et al. [2003] apply the moving least
squares surface model of Levin [2004] to develop an implicit nor-
mal representation. Xie et al. [2003] propose a global alignment
strategy involving multi-seed propagation for sharp corner detec-
tion that König and Gumhold [2009] refine with Hermite splines.
Schertler et al. [2017] formulate an objective for the general orienta-
tion propagation problem and assess the performance of numerous
solvers. Metzer et al. [2021] orient normals via greedily aligning
each consistently oriented patch with the electric field gradient.

Recently, focus has shifted from estimating normals using an ap-
proximation of the local neighborhood toward global computation.
Curiously, Hou et al. [2022] show that starting with random normal
orientations, then iterating between PSR and recomputing normals,
converges in many practical scenarios. Xu et al. [2023] (GCNO) op-
timize the generalized winding number evaluated at Voronoi poles
[Amenta et al. 2001], guiding the winding number towards binary
values of 0 or 1. Gotsman and Hormann [2024] observe that for a
correct orientation of normals, a surface integral of a curl of any
vector field should be always zero. As such, they find a family of test
functions and solve a linear system for the normal signs. Liu et al.
[2024] maximize an energy derived from Dirichlet energy; their
method empirically converges to the correct normal orientations.
Lin et al. [2022] (PGR) considers products of normals and surface
element areas as variables. They find an indicator function — pa-
rameterized via these unknowns via Gauss formula — that is equal
to 1/2 at the query points. The indicator function then defines the
normals. Lin et al. [2024] optimize normals until they are aligned
with the winding number field gradient. Liu et al. [2025] improve
their performance and introduce a noise-resilient screened gener-
alized winding number. We compare with some of these methods
in §4. In general, these methods all assume input points to be on or
near the surface and thus create artifacts near interior points.

Fig. 2. 2D example of Faraday cage shielding under a linear external field
(Top Row) and a point-charge–induced field (Bottom Row). Left: the electric
potential in the absence of shielding. Middle: the resulting potential 𝑢 in
the presence of shielding. Right: The field strength | |∇𝑢 | | .

Finally, several learning-based approaches for normal estimation
of point clouds have been developed [Boulch and Marlet 2016; Guer-
rero et al. 2018; Li et al. 2023, 2022; Zhu et al. 2021]. In contrast
to these, our method is purely geometric and does not make use
of training data. Moreover, to our knowledge, no learning-based
method has been designed for normal estimation on point clouds
with complex interior structures.

3 Method

3.1 Faraday cage model
The electrostatic effect of an (ideal) Faraday cage may be modeled
by finding a harmonic electric potential Δ𝑢 = 0 subject to an equipo-
tential constraint on the surface of the conductive cage [Chapman
et al. 2015]. The direction and strength of the electric field is then
given by the gradient vector field ∇𝑢.

As a physical analogue, such a Poisson system may also be used
to model an elastic sheet at equilibrium as represented by its height
map, subject to the sameDirichlet and equipotential boundary condi-
tions. This is a reasonable approximation for small z-deflections and
is called antiplane strain within linear elasticity [Slaughter 2002].

The potential 𝑢 may be seen as the solution to a quadratic varia-
tional problemwith linear constraints. LetΩ ⊊ R3 denote a bounded
domain of interest, with boundary 𝜕Ω far from the cage𝐶 ⊊ Ω, and
let 𝜕𝐶 denote the boundary of the cage as schematically illustrated
in the red outlined image in Fig. 2.

min
𝑢:Ω\𝐶→R,𝑢𝐶 ∈R

∫
Ω
| |∇𝑢 | |2 (1a)

such that 𝑢 |𝜕𝐶 = 𝑢𝐶 (1b)
𝑢 |𝜕Ω = 𝑔. (1c)

In the above, 𝑢𝐶 is a variable denoting the potential on the cage
surface. The function 𝑔 denotes a boundary Dirichlet constraint that
imposes an external field by capturing the potential values at these
points in the absence of shielding. In our method, we consider the
imposition of both linear and point-charge–induced fields.
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3.1.1 Linear external fields. We use the term linear external fields
to refer to those induced by linear potentials on the boundary:
𝑔( ®𝑥) = ®𝑣𝑇 ®𝑥 + 𝑏 for some 𝑣 ∈ R3 and 𝑏 ∈ R. Note that, in the
absence of any shielding, the field would be constant and equal to
®𝑣 everywhere. In Supp. §5, we argue for symmetries that allow us
to parameterize the space of relevant linear fields by just a unit
vector ®𝑣 from half of S2 (a hemisphere) or equivalently, by a choice
of 1-dimensional subspace (element of RP2).
In the elastic sheet example, imposing an external linear field

with direction ®𝑣 yields Dirichlet boundary constraints 𝑢𝐵 (𝑥) = ®𝑣𝑇 𝑥
on 𝜕Ω and pins points on 𝜕𝐶 to the same z-value ( 𝑢𝑐 , an unknown
variable).

3.1.2 Point-charge-induced fields. The most accurate way to model
point-charge–induced fields is to puncture the domain Ω at the
point charge locations and enforce a 1/𝑟 limiting behavior as the
distance 𝑟 to the point charge approaches 0 [Chapman et al. 2015].
Additionally, one should impose a similar 1/𝑟 limiting behavior as
𝑟 → ∞. For simplicity in modeling the problem, we simply assign a
high value𝑀 ≫ 0 to 𝑢𝜕Ω at the point charge positions and 𝑢𝜕Ω = 0
otherwise (on the outer boundary of Ω).

3.2 Discretization details
To model the conductive cage 𝐶 , we instantiate spheres about the
input points of the point cloud. As the shielding is positively corre-
lated with the “thickness” of the cage bars [Chapman et al. 2015],
we aim to make the spheres large relative to the local density of
the input without creating intersections. To accomplish this, we
construct a 1-NN graph and set each radius to be 45% of the distance
to the nearest neighboring point. This ensures a sensibly varying
“cage radius” and strengthens the shielding effect.

Given such anΩ and𝐶 , we solve the Poisson problem at handwith
a mesh-based FEM discretization. In 2D, we use Triangle [Shewchuk
1996], and in 3D we use Tetgen [Si 2015] to generate constrained
conforming Delaunay triangulations of the domain Ω\𝐶 . The balls
that constitute 𝐶 are approximated by icosahedra. Further refining
this approximation yields diminishing returns: see Supp. §6.
On this mesh, the standard cotangent Laplacian 𝐿 = 𝑑𝑇0 ∗1 𝑑0

is used for the Dirichlet energy (expressed with DEC operators
[Crane et al. 2013]). Imposing Dirichlet boundary constraints on
𝜕Ω and equipotential constraints on 𝜕𝐶 would result in a quadratic
optimization with linear constraints. However, we incorporate the
known Dirichlet boundary conditions into the objective and gather
the potential values along 𝜕𝐶 into a single scalar variable to obtain
an unconstrained quadratic optimization, which reduces to a linear
solve. A brief derivation is outlined below.

We assume that we have ordered the mesh vertices with interior
vertices first (index set I), boundary (𝜕Ω) vertices second (index set
B), and cage vertices third (index set C): u𝑇 =

[
uI𝑇 uB𝑇 uC𝑇

]
.

The equipotential constraints are specified with a single variable
uC = 𝑢𝐶1. Dirichlet boundary conditions uB are given by ®𝑣𝑇 ®𝑥 for a
linear field scenario (§3.1.1) or simply 𝑀 ≫ 0 at the point charge
positions and 0 elsewhere for a point-charge-induced field (§3.1.2).
The Dirichlet energy objective u𝑇 𝐿u may then be considered in

block form and simplified.

[
uI𝑇 uB𝑇 uC𝑇

] 
𝐿II 𝐿IB 𝐿IC
𝐿𝑇IB 𝐿BB 𝐿BC
𝐿𝑇IC 𝐿𝑇BC 𝐿CC



uI
uB
uC

 =
uI𝑇 𝐿IIuI + uB𝑇 𝐿BBuB + uC𝑇 𝐿CCuC+

2uI𝑇 𝐿IBuB + 2uI𝑇 𝐿ICuC + 2uB𝑇 𝐿BCuC (2)

The second of the diagonal terms is a constant, with uB known, and
the third diagonal term simplifies to 𝑢2

𝐶
1𝑇 𝐿CC1. Similar substitu-

tions for off-diagonal terms result in an equivalent expression in
terms of the unknown variables ũ𝑇 =

[
uI𝑇 𝑢𝐶

]
:

[
uI𝑇 𝑢𝐶

] [ 𝐿II 𝐿IC1
1𝑇 𝐿𝑇IC 1𝑇 𝐿CC1

] [
uI
𝑢𝐶

]
+
[
uB𝑇 𝐿𝑇IB 1𝑇 𝐿𝑇BCuB

] [uI
𝑢𝐶

]
.

(3)

Taking a derivative with respect to ũ results in the linear system:[
𝐿II 𝐿IC1

1𝑇 𝐿𝑇IC 1𝑇 𝐿CC1

] [
uI
𝑢𝐶

]
= −

[
𝐿IBuB

uB𝑇 𝐿BC1

]
(4)

This reduces to a sparse positive-definite linear system, which we
solve with the CHOLMOD suite of algorithms for sparse Cholesky
factorization [Chen et al. 2008]. With the factorization in hand, we
may efficiently solve over the various field scenarios 𝑖 .

Fig. 3. Close-up view of concave region of walking_teapot, where white
circles represent cage spheres. We measure 𝐸max (linear external fields only)
and | |∇𝐸max | | at various sample points. Both are several orders of magni-
tude smaller for interior points (2) compared to exterior points (3). Across the
cage sphere (1), | |∇𝐸max | | is largest in the direction of the desired normal.
Points (4) and (5) are located in a region of the exterior with greater shielding
from nearby features; nonetheless, 𝐸max remains an order of magnitude
larger than the interior. Input drawing: © Jafet Rodriguez.

3.3 Max. field strength
A simple way to gather the shielding information is via a function
that measures the maximum electric field strength | |∇𝑢 | | under
all external field scenarios. Under the elastic sheet analogy, points
surrounded by the cage will have very low gradient norm (field
strength) for all directions ®𝑣 , while points outside the cage will have
high gradient norm for some directions. Thus, taking a maximum
of field strengths over all directions results in outward-pointing
gradients near the cage. For notational brevity, let the index set

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Faraday Cage Estimation of Normals for Point Clouds and Ribbon Sketches • 5

Fig. 4. Slices of the three-dimensional max field strength 𝐸max function
(linear external fields only) for a few models. Left to right: walking_teapot
ribbon sketch, huapen manifold input, toyhorse ribbon sketch. Note that
even with linear fields, the field strength reaches into concavities and han-
dles due to the global nature of Faraday cage shielding. walking_teapot,
toyhorse: © Jafet Rodriguez.

L = {1, . . . , 𝑛} label the 𝑛 external linear field scenarios, each given
by a unit vector ®𝑣𝑖 ∈ S2. Let 𝑢𝑖 denote the resulting potential. If
the user opts to consider point-charge–induced external fields, we
gather all specified point charge positions 𝑝1, . . . , 𝑝𝑚 into a single
field scenario and denote the resulting potential as 𝑢pts. If no such
point-charge–induced field is given, let 𝑢pts = 0. Then, the max.
field strength is given by

𝐸max (𝑥) = max
(
max
𝑖∈L

| |∇𝑢𝑖 (𝑥) | | , | |∇𝑢pts (𝑥) | |
)
. (5)

3.3.1 Discretization. We discretize 𝐸max as a piecewise-linear func-
tion over the triangle/tet mesh, obtained via the following averaging
steps:

(1) Average triangle/tet-wise gradient vectors ∇𝑢𝑖 onto vertices,
via an area/volume-weighted average

(2) Take their norm to obtain | |∇𝑢𝑖 | | as a vertex-valued function
(3) Take their maximum over 𝑖 in order to determine 𝐸max

The 𝐸max values at vertices are linearly interpolated over the the
triangle/tet elements to obtain a function that we use for normal
estimation and classification of interior points. Fig. 3 and Fig. 4
illustrate that the global nature of shielding allows for probing of
handles and concavities with just linear fields.

3.3.2 Linear field sampling. By Lemmas 1 and 2 in Supp. §5, we
need only sample from a hemisphere or from 1-dimensional sub-
spaces. In practice, we found that remarkably few directions suffice
to elicit reasonable output from 𝐸max, and that diminishing returns
are quickly reached.We show this in Supp. §2. For three-dimensional
scenarios, we end up sampling just 6 unit vectors from half of the
icosahedron.

3.4 Normal estimation and subsequent surfacing
To estimate normals at input points, we average ∇𝐸max from the
triangle/tet. elements onto mesh vertices, weighting by area/volume.
We then average the gradients on the cage vertices surrounding
each input point and normalize the result to obtain our final normal
estimates. Afterwards, Poisson Surface Reconstruction may be run
on the input with or without screening to obtain a surface.

Fig. 5. Example of subtractive and additive Faraday cage sculpting opera-
tions. Top: The addition of a point charge field source at the red point refines
the concave interior of mug by locally increasing the value of 𝐸max. Bottom:
The addition of several additional cage points (green) near a large gap in
chili_decimated improves nearby normal estimates and filters more inte-
rior points, repairing an unwanted hole. chili: © Jafet Rodriguez.

3.5 Interior point filtering
If the input contains structures/artifacts within the object’s interior,
we find that removing interior points improves surface reconstruc-
tion quality. As such, we use 𝐸max to filter interior points as follows:

(1) Extract the 𝛼-isosurface of 𝐸max via marching tetrahedra
(2) Classify points as inside/outside relative to the 𝛼-isosurface

by thresholding on the Fast Winding Number [Barill et al.
2018] with value 0.9

With regard to linear external fields, there is a natural reference
point for a set threshold 𝛼 . In the absence of any shielding, the field
strength is constant at | |®𝑣 | | = 1; as such, any region for which 𝐸max
is less than 1 may be considered shielded. In practice, we opt for a
more conservative filtering of interior points and find 𝛼 = 0.01 and
𝛼 = 0.05 to be effective for dense/complete inputs and sparse inputs
(e.g. ribbon sketches with large missing areas) respectively.

3.6 Faraday cage sculpting
Although this work focuses primarily on fully automatic normal
estimation, we introduce prototypes for post-processing tools to
demonstrate our method’s flexibility. First, normal estimation meth-
ods such as ours may struggle with sharp concavities. As such, we
allow users to specify point charges, each of which imposes another
external field (§3.1.2). Point charges subtract from the inferred in-
terior and sharpen nearby boundaries, improving nearby normal
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Fig. 6. Example of consistent orientation of intersecting components. A closeup comparison of the intersection between a leg of the walking_teapot model
and the body. Top row: a slice of the resulting normals for various methods; bottom row: A view of the screened PSR reconstruction (without interior point
filtering for our method). Our method is the only one that achieves correctly outward-pointing normals for both components and has the most faithful
reconstruction near the surface intersection. Input drawing: © Jafet Rodriguez.

estimates. Second, the user may achieve an additive effect by placing
additional cage vertices. This is useful in the sparse ribbon setting:
gaps between ribbons may prevent interior structures from being
properly shielded. Fig. 5 demonstrates each operation, depicting
the user’s input as well as the effect of each operation on 𝐸max and
the resulting surface reconstruction. See Supp. §3 for additional
implementation details.

4 Results
We begin with a qualitative observation and then present results on
point clouds of four different kinds: misaligned point cloud scans,
samples from ribbon sketches, samples from intersecting Model-
Net/Thingi10k meshes, and samples from single-component water-
tight meshes, hereafter termed “clean” inputs. Existing methods to
which we compare are fully automatic. As such, only linear external
fields are used to compute 𝐸max in the results that follow. We forgo

Fig. 7. Schematic of winding-number-consistent normals. Left: with two
intersecting domains 𝐴 and 𝐵, the normals produced by FaCE align with
the negative gradient of the winding number; these are labelled in their
respective regions, and would become differentiable over 𝜕𝐴 and 𝜕𝐵 if
sampled as point clouds. Right: Other methods implicitly assume𝑤 ∈ [0, 1]
and tend to resolve such intersections by giving inward-point normals for
𝐴 ∩ 𝐵 resulting in large intrusive concavities.

use of our post-processing tools (§3.6) entirely to provide a more
balanced comparison.

4.1 Intersecting surfaces and winding number
An interesting empirical observation is that FaCE robustly produces
correct outwardly-pointing normals on intersecting components,
even for points sampled from “within” another surface (see Fig. 6).
All other methods that we have tested against do not reproduce this
behavior: iPSR [Hou et al. 2022] and WNNC [Lin et al. 2024] consis-
tently flip orientations on the parts within the other surface, GCNO
[Xu et al. 2023] struggles to converge in a reasonable amount of time
on such input, and BIM [Liu et al. 2024] handles orientations incon-
sistently in these regions, getting some right and some wrong. This
difference is key to the superior Screened PSR reconstructions that
we obtain in these scenarios, producing fewer concavity artifacts at
these regions of intersection.
Intuitively, FaCE produces normals that better reflect the nega-

tive gradient of the ground truth winding number 𝑤 [Barill et al.
2018]. Regions surrounded by multiple components are shielded to
a greater extent; as such, the gradient of 𝐸max should align roughly
with −∇𝑤 . Fig. 7 illustrates the comparative behavior of our method
with others in this scenario. While FaCE produces normals consis-
tent with the winding number, other methods do not, leading to
the intruding concavities shown. This behavior derives from im-
plicit assumptions that surfaces are non-intersecting and watertight,
resulting in𝑤 = 0, 1 over the entire domain.

4.2 Experimental setup
Below, we perform experiments on the categories of inputs outlined
in §4. For each mesh/ribbon input, we obtain a point cloud via
Poisson disk sampling except in §4.3 which follows a synthetic
scanning pipeline. We compare to several state-of-the-art methods:
iPSR [Hou et al. 2022], GCNO [Xu et al. 2023], BIM [Liu et al. 2024],
andWNNC [Lin et al. 2024] for normal estimation and SurfaceBrush
[Rosales et al. 2019] for surfacing ribbon sketches. iPSR was run with
default parameters (max. 30 iterations). As noted in other works [Lin
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Fig. 8. Results on misaligned, non-uniformly sampled point cloud scans generated by the synthetic scanning pipeline of [Huang et al. 2024]. Compared with
existing normal orientation methods, ours achieves better treatment of thin structures. Holes and deep concavities can result from inward facing normals on
misaligned points in other methods.

Fig. 9. Example of a real-world misaligned scan of a wrench and reconstructions after normal estimate. By preserving outward normal orientations for interior
points, ours is the only one that reproduces the surface without unwanted holes or missing features.

et al. 2024; Liu et al. 2024; Xu et al. 2023], the running time of GCNO
may be quite long on inputs exceeding around 5000 points: we stop
GCNO after 1 hour on each input (obtaining ≥ 50 iterations for
each) and find this sufficient for most small-scale models. For, BIM
we set an internal “scale” parameter to 0.05 for inputs scaled to the
[0, 1] AABB as recommended by the authors. WNNC incorporates
a smoothing parameter: we empirically determine the best value for
each category of input. Timing experiments were performed on a
2021 MacBook Pro (M1 Pro, 16 GB LPDDR5). For general geometry
processing algorithms, we use MeshLab [Cignoni et al. 2008].

For quantitatively assessing normal estimates, we consider align-
ment percentage (positive dot product with ground truth), mean
angle error, and standard deviation of angle error. For assessing
surface reconstruction, we consider symmetric Hausdorff (max. of
both directed Hausdorff distances) and Chamfer distances. Broadly
speaking, these metrics do not always capture obvious qualitative
differences in output. In particular, we find that Chamfer distance
does not always capture undesirable oscillations e.g. bumpiness.
Hausdorff distance roughly quantifies the severity of the output’s
largest defect: we find it to be more effective (though still imperfect)
for detecting concavities and surface oscillation.

4.3 Comparison on misaligned point cloud scans
Composition of point clouds from multiple scanning viewpoints
is a challenging problem; errors in registration often lead to mis-
alignment between surface points. The resulting “doubling” effect,
in which the point cloud contains slightly offset copies of the target
surface, poses a compelling application for FaCE and its handling

of interior structures. Using the method of Huang et al. [2024], we
generate 14 examples of misaligned point clouds from a synthetic
scanning pipeline. In the synthetic scans, we specify nonuniform
sampling, a misalignment angle of 3°, and noise intensity of 0.01
(relative to the unit bounding box). We then downsample the syn-
thetic scans to roughly 20,000 points via PDS and run our method
as well as those of [Hou et al. 2022; Lin et al. 2024; Liu et al. 2024].
FaCE effectively filters interior points that otherwise create un-

wanted artifacts with PSR, especially its screened variant. Sample
reconstructions are shown in Fig. 8. Other methods struggle to
maintain a consistent orientation on the interior “doubled” surface,
exacerbating the negative effect of these points and leading to pit-
ting (abc, Middle row) and holes (pelvis, Top row) in thin regions.
Average Chamfer and Hausdorff distances for each method are pro-
vided in Table 1a, with full results in Supp. §4.1; our method achieves
better Hausdorff on the greatest number of inputs. Furthermore, we
provide a representative example of a real-world misaligned scan in
Fig. 9 and find that FaCE is the only one that faithfully reproduces
the input with no holes.

4.4 Comparison on ribbon sketches
In this section, we focus on the ribbon sketches of [Rosales et al.
2019]. In addition to using 12 of the original sketches, we generate
sparsified versions to model a simpler workflow in which the user’s
strokes need not cover the entirety of the intended surface, allowing
for gaps. Removing strokes at random would completely eliminate
key features of the sketches that are drawn as one continuous ribbon,
so we instead follow a heuristic of removing alternating “stripe”
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Fig. 10. Results on sparsified ribbon inputs from [Rosales et al. 2019]. Compared to the alternative point cloud normal orientation methods and SurfaceBrush,
ours (right) correctly treats internal structures typical for VR ribbon sketches. walking_teapot, toyhorse: © Jafet Rodriguez. teddy_bear: © Elinor Palomares.

ribbons that surround an intended component. We compare to the
normal estimation methods of [Hou et al. 2022; Lin et al. 2024;
Liu et al. 2024; Xu et al. 2023] as well as the surfacing algorithm
of [Rosales et al. 2019]. Given the lack of a true “ground truth”
for surfaced sketches, we take the boolean union of the results in
[Rosales et al. 2019] to obtain a single connected component as our
reference mesh. This removes unwanted intrusions into the interior.
One non-manifold result is alpha wrapped as in §4.5.

Sample reconstructions on sparsified inputs are shown in Fig. 10.
Of particular interest are the regions in which accessory compo-
nents (e.g. legs, handle of toyhorse) intersect the interior. Other
methods are prone to sculpting out concavities in these areas due
to their inability to maintain a consistent outward orientation as
described in §4.1. Such concavities are difficult to repair; in contrast,
our method maintains a clean transition between components in
both unmodified and sparse ribbon settings. Quantitatively, FaCE
surpasses existing methods in all areas, achieving better normal
metrics as well as lower Chamfer and Hausdorff distance (Tables
1b, 1c). Full results are in Supp. §4.2 and §4.3.

4.5 Comparison on CAD meshes with interior structures
In order to further assess the suitability of FaCE for processing
interior structures, we consider triangle soups in CAD settings
sampled from ModelNet [Wu et al. 2015] (20 models) and Thingi10k
[Zhou and Jacobson 2016] (5 models). To approximate a ground
truth surfacing, we cannot use boolean operations, which depend
on an input’s winding number being piecewise constant [Zhou et al.
2016]. As an alternative, we perform alphawrappingwith offset with
𝛼 = 0.005, 𝛿 = 0.001. Although alpha wraps are unsuited for general
surfacing of point clouds with noise and large gaps [Portaneri et al.
2022], we find that they are effective for representing the surface
geometry of these triangle soups, which contain no exterior gaps.

Sample reconstructions from Screened PSR are shown in Fig. 11,
with additional reconstructions done using the unscreened variant

in 12. Similar to the synthetic scans of §8, other methods suffer from
misaligned normals on interior structures, producing large inte-
rior voids (such where the base meets the body of train_monitor)
and surface oscillations. Rippling artifacts are seen on the cover of
test_bed, sideboard of test_chair, and screen of train_monitor.
By filtering interior points and maintaining more consistent orien-
tations on interior points, FaCE avoids these defects and recovers
the intended surface. We achieve better Chamfer and Hausdorff
distance than existing methods (Table 1d). Full quantitative results
are provided in Supp. §4.4.

4.6 Comparison on clean inputs
For completeness and parity with previous works, we consider in-
puts that are uniformly sampled from watertight, manifold surfaces.
We run existing methods [Hou et al. 2022; Lin et al. 2024; Liu et al.
2024; Xu et al. 2023] on 18 inputs provided by Xu et al. [2023]. Over-
all, we find all methods to be highly capable: every method achieves
an average alignment across inputs exceeding 99%. FaCE achieves
better running times than GCNO and BIM in the general case and
iPSR on noisier inputs where convergence is slow (Table 2). Metrics
are presented in Supp. §4.5.

4.7 Additional experiments
In Supp. §1, we test our method’s robustness to two different types
of noise: perturbation of the input points with Gaussian noise and
addition of white noise points. We compare to [Lin et al. 2024]
and find that our method’s performance is strong even in the pres-
ence of heavy noise. In Supp. §2, we show that the performance of
FaCE does not improve significantly by sampling more directions,
justifying our use of few external field scenarios. In Supp. §6, we
demonstrate that refining the cage sphere approximation yields
minimal performance gains at the cost of increased meshing time.
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Fig. 11. CAD objects sampled and re-surfaced by combining normal estima-
tion methods with screened PSR. These inputs contain interior structures
left over from the modeling process. Our ability to filter interior points
results in smooth, detail-preserving reconstructions and avoids concavities
surface pitting.

Fig. 12. CAD objects sampled and re-surfaced with a combination of var-
ious normal estimation methods and PSR without screening. Although
unscreened PSR is less likely to preserve sharp features, we find that the ad-
vantages of our method in preventing concavities and surface pitting persist.
Areas like the lower region of test_bed_0611 (Top row), the underside of
train_monitor_0465 (Middle row), and the crevice in train_sofa_0060
(Bottom row) may produce inconsistent normals using other methods.

5 Conclusion
We propose a novel method (FaCE) for point cloud orientation
which draws inspiration from the Faraday cage shielding effect.
The gradient of the max. field strength over a handful of external
field scenarios is used to estimate point normals. Each scenario is
efficiently modeled with a simple Poisson system that results in a
sparse positive-definite linear system.
After obtaining normals with FaCE, applying standard Poisson

Surface Reconstruction provides an indication of normal estimation
quality. We find that this pipeline is superior to existing methods in
surfacing misaligned/misregistered point clouds and sparse ribbon
brush sketches. In particular, our results avoid sharp concavities due
to component intersection and surface pitting resulting from slightly
offset surfaces. We hypothesize that this is due to the fact that FaCE
recovers normals that are better aligned with the negative gradient
of the winding number. Our pipeline is competitive on “clean” input
sampled from connected watertight meshes.

For ribbon brush inputs, our pipeline reduces the labor required of
the artist by accommodating sparser input. Finally, we propose tools
for sculpting 𝐸max via the addition of point charges (subtractive ef-
fect) and Faraday cage points (additive effect), leading to refinement
of normal estimates and interior classification.

5.1 Limitations and future work
A fundamental limitation of FaCE is handling domains with en-
closed interior cavities, e.g., an annulus in 2D or a spherical shell in
3D. With only linear fields, FaCE interprets the interior cavities as
another domain and reverses the ground truth normals. However,
these scenarios are unlikely to arise in our applications, and could be
corrected with user placement of point charges within the cavities.
Next, we note several challenges that we hope to address in fu-

ture work. First, robust reconstruction of open/nearly-flat surfaces
requires further investigation. Fig. 13 illustrates the limitations of
Poisson Surface Reconstruction in processing thin structures with
little appreciable volume, regardless of normal estimation quality.
Second, lack of sample density further complicates reconstruction of
normals in thin, concave regions. PSR introduces breaks in filament-
like features when sampling is too sparse regardless of normal
estimation quality; artifacts resulting from improper normal estima-
tion are also observed. (Fig. 14). Third, slight concavities result in
sparsified ribbon inputs where ribbons are removed. Different re-
construction algorithms such as [Feng and Crane 2024] or a tailored
method may alleviate these artifacts.

On a technical level, the current implementation of our method is
unoptimized: the majority of the running time is spent meshing the
input (Fig. 15). Newer tet. meshing libraries (e.g. [Hu et al. 2020])
may offer improved performance: we use TetGen in this work for
its robustness. Alternatively, it would be possible to accelerate the
method significantly by adopting multigrid solvers, as is done in
Poisson Surface Reconstruction [Kazhdan et al. 2006]. This could
potentially enable real-time Faraday cage sculpting.
Lastly, we suspect that our method offers rich information re-

garding point cloud interiority that is not captured by 𝐸max alone.
As such, we encourage further exploration of the distribution of
field strengths over all external field scenarios and look forward to
variations on our approach that make use of such information.
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Fig. 13. We run FaCE on Archimedean spiral “ribbons” of varying thickness to investigate our method’s behavior on thin, concave structures, sampling 20,000
points from each original mesh. The thickness of each ribbon is stated as a percentage of the spiral’s endpoint radius. Poisson Surface Reconstruction fails on
vanishingly thin volumes even if the ground truth normals are supplied. As thickness increases, FaCE normals remain competitive relative to the ground truth
in terms of reconstruction quality.

Fig. 14. Results on complex inputs from Xu et al. [2023]. If sampled sparsely (top row for each input), Poisson Surface Reconstruction struggles to reconstruct
thin filaments even when supplied with ground truth normals. Furthermore, with sparse sampling, FaCE and Hou et al. [2022] improperly estimate normals in
highly shielded “interior” regions of these concave structures, producing blob-like artifacts. With more dense sampling (bottom row for each input), FaCE
successfully recovers the target shape.
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Table 1. Abridged results of quantitative experiments. For normal estimation, we consider the percentage of normals that align with the ground truth (positive
dot product), the average error, and the standard deviation of the error. For surface reconstruction, we consider Chamfer distance and symmetrized Hausdorff
distance. We report averages across each dataset as well as the number of models for which each method achieved the lowest distance.

(a) Surface reconstruction metrics on synthetic scans in §4.3.

Method iPSR (2022) BIM (2024) WNNC (2024) Ours

Metric PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR

Avg. Chamfer 0.0001092 0.0001282 0.0000984 0.0001323 0.0000870 0.0000969 0.0000900 0.0000999
Avg. Hausdorff 0.0038414 0.0037226 0.0019987 0.0025345 0.0018770 0.0023778 0.0024578 0.0021429
# Best, Chamfer 8 0 1 5
# Best, Hausdorff 3 0 3 8

(b) Normal estimation metrics on sparsified ribbon sketches in §4.4. GCNO did not converge on two inputs: metrics are reported across remaining models.

Metric iPSR (2022) GCNO (2023)∗ BIM (2024) WNNC (2024) Ours

Avg. align % 95.84 89.45 95.93 94.01 98.47
Avg. ME (deg.) 17.75 32.53 17.70 21.96 15.35
Avg. SE (deg.) 25.90 29.29 25.01 31.94 18.42

(c) Surface reconstruction metrics on sparsified ribbon sketches in §4.4. SurfaceBrush and GCNO did not terminate/converge on two inputs:
metrics are reported across remaining models.

Method S.B. (2019)∗ iPSR (2022) GCNO (2023)∗ BIM (2024) WNNC (2024) Ours

Metric – PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR

Avg. Chamfer 0.0023428 0.0001195 0.0001375 0.0002445 0.0002194 0.0002022 0.0001809 0.0001733 0.0001925 0.0001978 0.0000926
Avg. Hausdorff 0.0323616 0.0083068 0.0103586 0.0067215 0.0087957 0.0072071 0.0110549 0.0092783 0.0119257 0.0068092 0.0054694
# Best, Chamfer 0 1 1 2 0 8
# Best, Hausdorff 0 0 1 3 1 7

(d) Surface reconstruction metrics on CAD models in §4.5.

Method iPSR (2022) GCNO (2023) BIM (2024) WNNC (2024) Ours

Metric PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR PSR Sc. PSR

Avg. Chamfer 0.0003133 0.0002326 0.0026134 0.0018425 0.0004234 0.0002357 0.0003420 0.0002743 0.0003499 0.0001917
Avg. Hausdorff 0.0115380 0.0089797 0.0316620 0.0317204 0.0160205 0.0105053 0.0143459 0.0108921 0.0118015 0.0085078
# Best, Chamfer 0 2 2 11 8
# Best, Hausdorff 4 4 3 5 7

Table 2. Timing (in seconds) of methods on three models: M1 = torus, M2 =
huapen, M3 = test_bed_0523. On tested inputs, FaCE generally performs
favorably relative to iPSR, which may take longer to converge on noisy
inputs. Accurate timings for BIM and GCNO could not be obtained on our
hardware due to architectural issues with the reference implementations; see
[Lin et al. 2024; Liu et al. 2024; Xu et al. 2023] for their results, typically much
slower than FaCE even on more powerful systems. For detailed runtime
analysis, refer to §5 “Runtime” and Supplementary §3 in [Liu et al. 2024].

Method iPSR (2022) Ours WNNC (2024)

No. points M1 M2 M3 M1 M2 M3 M1 M2 M3

1,000 46.73 149.45 109.51 5.36 7.25 6.45 1.95 1.69 2.10
5,000 52.09 72.71 202.02 28.80 29.10 27.49 2.17 2.78 2.76
10,000 64.80 84.14 373.17 61.76 61.93 60.60 4.35 4.08 4.02
20,000 64.58 85.01 421.19 134.52 132.87 135.07 6.21 6.15 5.85

Fig. 15. Breakdown of running time for our method on torus input (10,000
samples, total 62.16 s). Meshing and computation of discrete operators pose
the main performance bottleneck.
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