


Orienting Point Clouds (Kazhdan)

● Classic problem: how can we 
assign normals to elements of a 
point cloud?

● Increasingly less relevant as 
modern LiDAR scanning returns 
oriented points, but some older 
datasets may lack this data

● Inspiration: Orienting Point Clouds 
with Dipole Propagation (2021)

○ Idea: come up with an algorithmic 
method of solving the “local” phase of 
the orienting problem (rather than using 
a neural network)

https://cims.nyu.edu/gcl/papers/2021-Dipole.pdf
https://cims.nyu.edu/gcl/papers/2021-Dipole.pdf


Orienting Point Clouds (Kazhdan)

Local phase

● Instead of letting a neural 
network orient the points in 
each patch: fit an implicit 
function around each point to 
guide our decision

○ We spent the most time on this as 
SGI participants

● Clusters chosen by calculating 
k-nearest neighbors (k-d tree)

● The success of this orienting 
method depends on the 
goodness of all neighboring fits



Orienting Point Clouds (Kazhdan)

Global phase

● We’d rather not try all possible 
combinations of signs for the total set 
of points: clustering allows us to 
reduce the dimensionality of the 
problem at each step

● Greedy approach: try all 2c 
combinations of signed clusters and 
see which one maximizes this energy

● Merge clusters up one step, and 
repeat at the next level

○ End with one coherently oriented cluster

Sign of point i Assignment of 
signs to clusters

Assignment of 
points to clusters



Our Work: New fits

● Provided: linear fit, general quadratic fit
● Both work well for point clouds with certain features – also identified clear 

failure cases for both

Linear fit Quadratic fit



Our Work: New fits

● First attempt: spherical fit using least squares approach
● Generally speaking, not very useful…



Our Work: New fits

● Subsequent attempts at fitting local 
neighborhoods were much more 
successful

● Parabolic fit: limits quadratic fit to 
parabolas with evenly-scaled major 
and minor axes

● Associative fit: a “best of both worlds” 
approach that first attempts to use one 
fit, and falls back on a secondary fit 
type if the estimated goodness of fit 
doesn’t clear a threshold value

○ Templated C++ code makes it easy to pass 
in our other fits as parameters to the 
associative fit Associative<Linear, Quadratic> Fit

Parabolic Fit



Our Work: Touch-ups

● Introduced use of distance 
weighting (diminish contribution of 
points farther from the cluster’s 
center)

● Similarity scores for assessing 
performance: comparison with 
ground truth normal lines & 
orientations

Pulley with distance weighting 
applied in construction of fits



Continuing work

● Accounting for non-uniform 
sampling & local changes in point 
cloud density (dynamic 
neighborhood size)

● New implicit fit types: “wedge” or 
intersection of planes, to more 
accurately capture sharp edges

Interior of “flower” produced with 
preliminary wedge fit



Text-Guided Shape Assembly (Gadelha)

● CLIP is a neural network 
providing a joint embedding of 
text and images

● Goal: generate images from 
geometric primitives (curves, 
triangles, cuboids) using 
differentiable rendering

○ Reliance on CLIP means that we 
don’t have to train a network 
ourselves: focus on constructing a 
sensible optimization problem 
instead

● Inspiration: CLIPDraw (2021), 
which constructs images from 
curves 

https://openai.com/blog/clip/
https://arxiv.org/pdf/2106.14843.pdf


Text-Guided Shape Assembly (Gadelha)

● Since text and images are embedded 
in the same vector space, we can use 
cosine similarity as a metric for 
assessing “closeness”

○ Loss function incorporates negative cosine 
similarity: we want to maximize this 
quantity to minimize the loss function

● By passing every draw operation 
through a differentiable rendering 
pipeline, we can keep track of 
gradients for each parameter & 
perform gradient descent to reach a 
locally optimal solution

(Courtesy of diffvg)

https://github.com/BachiLi/diffvg


First attempts: gradient-based optimization of triangles

● Employing a similar approach to 
CLIPDraw, we attempted to make 
use of diffvg, adapting the approach 
to suit triangles

● We (very quickly) discovered the 
importance of applying data 
augmentations: otherwise, the 
dataset being fed to the model isn’t 
comprehensive enough to produce 
sensible results

○ Random crop, rotate, perspective 
project enabled through PyTorch “golden retriever” with no 

augmentations incorporated into 
the loss function

https://github.com/BachiLi/diffvg


After adding augmentations…

“fruit bat” “golden retriever” “lighthouse”

Changing which transformations are applied has profound effects on the results!



Meshing triangles

“Mona Lisa” “Batman” “Balloons” (fixed set of vertices)



Other 2D approaches: evolutionary model

● Instead of following gradient 
descent (series of directed steps), 
introduce random changes & keep 
ones that improve the outcome

● Too slow unless random changes 
are calibrated toward the desired 
type of results 

prompt = “red”



Next week: 3D shape assemblages

● We turned to a 3D differentiable 
renderer: Nvdiffrast

● Make use of the extra dimension to 
construct scenes of 3D primitives 
that are intelligible when viewed 
from multiple camera angles

● Major challenges posed by the fact 
that Nvdiffrast provides little in the 
way of out-of-the-box data 
structures

https://github.com/NVlabs/nvdiffrast


Next week: 3D shape assemblages

Milestones

1. Define geometric primitives by constructing 
buffer objects

2. Construct means of transforming individual 
primitives

○ Goal: optimize parameters of each transformation, 
which means that each transform operation must be 
differentiable

3. Decomposition of primitives back into triangle 
elements, such that Nvdiffrast can properly 
render the scene

Result: the beginnings of a pipeline that seems 
responsive to certain features of each text prompt

● With more time, exploring the wide range of 
possibilities for 3D data augmentations would 
have produced more interesting results

prompt = “red” prompt = “rainbow”

prompt = “a centered red square”



I❤LA: Compilable Markdown for Linear Algebra (Gingold, Jacobson)

● New language specification 
designed to make it easier to 
translate “chalkboard math” into 
working code (first paper, 2021)

○ User formulates a problem in the 
syntax of I❤LA, which is then 
translated to code in one of several 
languages

■ C++ with Eigen
■ Python with NumPy
■ MATLAB
■ LaTeX

○ Supports unicode
● Compiler infrastructure that can 

be run on a web server or locally
○ Web

https://cragl.cs.gmu.edu/iheartla/paper.pdf
https://iheartla.github.io/iheartla/


Enhancement proposals

● Centered around a collection of optimization problems written by Alec 
Jacobson

● Goal: formulate the desired I❤LA for each of these problems & work 
backwards to identify new language features

○ Assess alternative formulations of each problem that should be treated as equivalent by the 
compiler

● Many proposed features arose from these discussions
○ ∀ “for all” (throughout)
○ Slicing to produce submatrices (#3)
○ Identity matrix

https://github.com/alecjacobson/convex-optimization-cookbook


New operator: Pseudoinverse 

To add a new feature, the following 
must be modified:

● EBNF grammar (specified directly 
as input to Tatsu, which then 
generates a parser)

● type_walker functions
● Intermediate node representation
● Code generators (for each desired 

language)

Merged into official I❤LA repository :)

https://github.com/iheartla/iheartla/tree/local_func


PyTorch backend

● Compatible with 
most of I❤LA’s 
core features

○ Missing some 
sparse matrix 
operations due to 
lack of support in 
PyTorch itself



Blog Posts

● Orienting Point Clouds
● Text-Guided Shape Assembly

http://summergeometry.org/sgi2022/orienting-point-clouds/
http://summergeometry.org/sgi2022/text-guided-shape-assembly/

